Weiss Schwarz: Rurouni Kenshin Booster Display (12 Pack) (ENG)


Pris:
Regular price 899 kr
Regular price Sale price 899 kr

Release date: 2025-05-30

Language:

English

Information:

We are awaiting delivery of this product and reserve the right to adjust ordered quantities or cancel orders in cases where the manufacturer or our distributors are unable to supply enough to fulfill all customer orders. Please note that pre-ordered products cannot be guaranteed to be delivered on the stated release date. Prices for pre-ordered products are preliminary and determined by us, and may change until delivery.

Notify me when this product is available

Our payment methods

  • American Express
  • Apple Pay
  • Google Pay
  • Klarna
  • Maestro
  • Mastercard
  • Shop Pay
  • Visa

Relive the epic battles and emotional stories of Rurouni Kenshin with this Weiss Schwarz Booster Display! This edition focuses on the legendary samurai Kenshin Himura and his fight for reconciliation. Perfect for fans of the series and competitive Weiss Schwarz players.

Content:

  • 1 Booster Pack contains 8 cards
  • 1 Display contains 12 Booster Packs
  • 1 Carton contains 24 Displays

Card Types and Rarities:

  • SEC (Secret): 2 types
  • SP (Special): 8 types
  • OFR (OverFrame Rare): 13 types
  • RRR (Triple Rare): 9 types
  • SR (Super Rare): 76 types
  • RR (Double Rare): 10 types
  • R (Rare): 22 types
  • U (Uncommon): 28 types
  • C (Common): 28 types
  • CR (Climax Rare): 12 types

Total: 100 card types + 108 Parallel cards

Why choose this set?

  • For fans of Rurouni Kenshin and classic samurai action.
  • Contains exclusive and rare card types such as Secret and OverFrame Rare .
  • Fantastic illustrations for collectors.
  • Perfect for competitive Weiss Schwarz players looking to strengthen their decks.

Ships within 24-48 hours.

For pre-order items, delivery takes 5-15 business days. Please email us at info@aquitaz.se (The product might be on its way in to our stock).

Customer Reviews

Be the first to write a review
0%
(0)
0%
(0)
0%
(0)
0%
(0)
0%
(0)